
Week 11 - Wednesday

 What did we talk about last time?
 Finished B-trees
 Hard problems on graphs

Just in case you want something else to work on …

 Not all NP-complete problems are graph problems
 The knapsack problem is the following:
 Imagine that you are Indiana Jones
 You are the first to open the tomb of some long-lost pharaoh
 You have a knapsack that can hold m pounds of loot, but there's way

more than that in the tomb
 Because you're Indiana Jones, you can instantly tell how much

everything weighs and how valuable it is
 You want to find the most valuable loot that weighs less than or

equal to m pounds

 This one is a little bit mathematical
 Say you have a set of numbers
 Somebody gives you a number k
 Is there any subset of the numbers in your set that add up to exactly

k?
 Example:
 Set: { 3, 9, 15, 22, 35, 52, 78, 141}
 Is there a subset that adds up to exactly 100?
 What about 101?

 These NP-complete problems are very hard
 Many of them are really useful
 Especially if you are a lazy traveling salesman

 Clay Mathematics Institute has offered a $1,000,000 prize
 You can do one of two things to collect it:
 Find an efficient solution to any of the problems
 Prove that one cannot have an efficient solution

 A Turing machine is a mathematical model for computation
 It consists of a head, an infinitely long tape, a set of possible

states, and an alphabet of characters that can be written on
the tape

 A list of rules saying what it should write and should it move
left or right given the current symbol and state

1 0 1 1 1 1 0 0 0 0

A

 3 state, 2 symbol "busy beaver" Turing machine:

 Starting state A

Tape
Symbol

State A State B State C

Write Move Next Write Move Next Write Move Next

0 1 R B 0 R C 1 L C

1 1 R HALT 1 R B 1 L A

 If an algorithm exists, a Turing machine can perform that
algorithm

 In essence, a Turing machine is the most powerful model we
have of computation

 Power, in this sense, means the ability to compute some
function, not the speed associated with its computation

 NP is actually a class of problem
 Problems in NP can be solved in polynomial time on a non-

deterministic computer
 A deterministic computer is the kind you know:
 First it has to consider possibility A, then, it can consider possibility B

 A non-deterministic computer (which, as far as we know, only exists in
our imagination) can consider both possibility A and possibility B at the
same time

 It's like a computer that can keep spawning threads and always has a core
to execute a new thread on

Deterministic
A B C D E F

A

B

C

D

E

F

Non-
Deterministic

 P is the class of decision problems that can be solved in
polynomial time by a deterministic computer

 Lots of great problems are in P:
 Is this list sorted?
 Is this number prime?
 Is the largest number in this B-tree equal to 38?

 Many problems are unknown:
 Does this number have exactly two factors?
 Is this graph equivalent to this other graph?

 Everything in P is also in NP
 Some problems are the "hardest" problems in NP
 This means that any problem in NP can be converted into one

of these problem in polynomial time
 These problems make up the class NP-complete

 Notice that P, NP, and NP-complete are all decision problems
 So, the TSP we stated is not technically NP-complete
 The NP-complete version is:
 Is there a tour of length less than or equal to 24 in this graph?

 The optimization versions of NP-complete problems are
called NP-hard

 Computer scientists view problems in P as "easy to answer"
 They can be computed in polynomial time

 Problems in NP are "easy to check"
 An answer can be checked in polynomial time

 For example, if someone gives you a Traveling Salesman tour,
you can verify that it is a legal tour of the required length

 But is easy to check the same as easy to answer?

 Most computer scientists think that P ≠ NP
 But if it were
 Most things could be perfectly scheduled
▪ e.g., the best room for a given number of students and the time preferences of

everyone involved

 All routing and path planning (UPS, military, etc.) would be optimal
 It might be possible to devise perfect genetic therapies for certain

conditions
 It would be possible to prove all kinds of previously unproven

theorems in mathematics

 On the other hand, if P = NP, it might also mean:
 Most of our encryption algorithms would be broken
 All computer, Internet, and banking security would be worthless

 Could creativity be doomed?
 If recognizing something good was the same as creating something

good … who knows?

If P=NP, then the world would be a profoundly different place than we
usually assume it to be. There would be no special value in "creative
leaps," no fundamental gap between solving a problem and
recognizing the solution once it’s found. Everyone who could
appreciate a symphony would be Mozart; everyone who could follow a
step-by-step argument would be Gauss; everyone who could recognize
a good investment strategy would be Warren Buffett. It’s possible to
put the point in Darwinian terms: if this is the sort of universe we
inhabited, why wouldn’t we already have evolved to take advantage of
it?

Scott Aaronson

 Base case
 Tells recursion when to stop
 Can have multiple base cases
 Have to have at least one or the recursion will never end

 Recursive case
 Tells recursion how to proceed one more step
 Necessary to make recursion able to progress
 Multiple recursive cases are possible

 Factorial:

public static int factorial(int n) {
if(n == 1) {

return 1;
} else {

return n * factorial(n – 1);
}

}

 A tree is a data structure built out of nodes with children
 A general tree node can have any non-negative number of

children
 Every child has exactly one parent node
 There are no loops in a tree
 A tree expressions a hierarchy or a similar relationship

 The root is the top of the tree, the node which has no parents
 A leaf of a tree is a node that has no children
 An inner node is a node that does have children
 An edge or a link connects a node to its children
 The depth of a node is the length of the path from a node to

its root
 The height of the tree is the greatest depth of any node
 A subtree is a node in a tree and all of its children
 Level: the set of all nodes at a given depth from the root

1

2 3 4

5 6 7

Root

Inner
Nodes

Leaves

 A binary tree is a tree such that each node has two or fewer
children

 The two children of a node are generally called the left child
and the right child, respectively

1

2 3

4 5 6

 Full binary tree: every node other than the leaves has two
children

 Perfect binary tree: a full binary tree where all leaves are at
the same depth

 Complete binary tree: every level, except possibly the last, is
completely filled, with all nodes to the left

 Balanced binary tree: the depths of all the leaves differ by at
most 1

 Review

 4-5 p.m. office hours canceled today because of Faculty
Assembly

 Finish Project 3
 Due Friday by midnight

 Review chapters 3 and 4 for Exam 2
 Next Monday!
 We'll review more for Exam 2 on Friday

	COMP 2100
	Last time
	Questions?
	Project 3
	Assignment 6
	Hard Problems
	Knapsack problem
	Subset sum
	Fabulous Cash Prizes
	A Few Finer Points…
	Turing machine
	Turing machine example
	Church-Turing thesis
	NP
	Deterministic vs. non-deterministic
	P
	NP-complete
	Decisions, decisions
	Easy to check vs. easy to answer
	What if P = NP?
	What if P = NP? (The Bad)
	A final word
	Review
	Recursion
	Recursion
	Recursive function example
	Trees
	Trees
	Terminology
	A tree
	Binary tree
	Binary tree
	Binary tree terminology
	Quiz
	Upcoming
	Next time…
	Reminders

