
Week 11 - Wednesday



 What did we talk about last time?
 Finished B-trees
 Hard problems on graphs







Just in case you want something else to work on …





 Not all NP-complete problems are graph problems
 The knapsack problem is the following:
 Imagine that you are Indiana Jones
 You are the first to open the tomb of some long-lost pharaoh
 You have a knapsack that can hold m pounds of loot, but there's way 

more than that in the tomb
 Because you're Indiana Jones, you can instantly tell how much 

everything weighs and how valuable it is
 You want to find the most valuable loot that weighs less than or 

equal to m pounds



 This one is a little bit mathematical
 Say you have a set of numbers
 Somebody gives you a number k
 Is there any subset of the numbers in your set that add up to exactly 

k?
 Example:
 Set: { 3, 9, 15, 22, 35, 52, 78, 141}
 Is there a subset that adds up to exactly 100?
 What about 101?



 These NP-complete problems are very hard
 Many of them are really useful
 Especially if you are a lazy traveling salesman

 Clay Mathematics Institute has offered a $1,000,000 prize 
 You can do one of two things to collect it:
 Find an efficient solution to any of the problems
 Prove that one cannot have an efficient solution





 A Turing machine is a mathematical model for computation
 It consists of a head, an infinitely long tape, a set of possible 

states, and an alphabet of characters that can be written on 
the tape

 A list of rules saying what it should write and should it move 
left or right given the current symbol and state

1 0 1 1 1 1 0 0 0 0

A



 3 state, 2 symbol "busy beaver" Turing machine:

 Starting state A

Tape 
Symbol

State A State B State C

Write Move Next Write Move Next Write Move Next

0 1 R B 0 R C 1 L C

1 1 R HALT 1 R B 1 L A



 If an algorithm exists, a Turing machine can perform that 
algorithm

 In essence, a Turing machine is the most powerful model we 
have of computation

 Power, in this sense, means the ability to compute some 
function, not the speed associated with its computation



 NP is actually a class of problem
 Problems in NP can be solved in polynomial time on a non-

deterministic computer
 A deterministic computer is the kind you know:
 First it has to consider possibility A, then, it can consider possibility B



 A non-deterministic computer (which, as far as we know, only exists in 
our imagination) can consider both possibility A and possibility B at the 
same time

 It's like a computer that can keep spawning threads and always has a core 
to execute a new thread on 
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 P is the class of decision problems that can be solved in 
polynomial time by a deterministic computer

 Lots of great problems are in P:
 Is this list sorted?
 Is this number prime?
 Is the largest number in this B-tree equal to 38?

 Many problems are unknown:
 Does this number have exactly two factors?
 Is this graph equivalent to this other graph?



 Everything in P is also in NP
 Some problems are the "hardest" problems in NP
 This means that any problem in NP can be converted into one 

of these problem in polynomial time
 These problems make up the class NP-complete



 Notice that P, NP, and NP-complete are all decision problems
 So, the TSP we stated is not technically NP-complete
 The NP-complete version is:
 Is there a tour of length less than or equal to 24 in this graph?

 The optimization versions of NP-complete problems are 
called NP-hard



 Computer scientists view problems in P as "easy to answer"
 They can be computed in polynomial time

 Problems in NP are "easy to check"
 An answer can be checked in polynomial time

 For example, if someone gives you a Traveling Salesman tour, 
you can verify that it is a legal tour of the required length

 But is easy to check the same as easy to answer?



 Most computer scientists think that P ≠ NP
 But if it were
 Most things could be perfectly scheduled
▪ e.g., the best room for a given number of students and the time preferences of 

everyone involved

 All routing and path planning (UPS, military, etc.) would be optimal
 It might be possible to devise perfect genetic therapies for certain 

conditions
 It would be possible to prove all kinds of previously unproven 

theorems in mathematics



 On the other hand, if P = NP, it might also mean:
 Most of our encryption algorithms would be broken
 All computer, Internet, and banking security would be worthless

 Could creativity be doomed?
 If recognizing something good was the same as creating something 

good … who knows?



If P=NP, then the world would be a profoundly different place than we 
usually assume it to be. There would be no special value in "creative 
leaps," no fundamental gap between solving a problem and 
recognizing the solution once it’s found. Everyone who could 
appreciate a symphony would be Mozart; everyone who could follow a 
step-by-step argument would be Gauss; everyone who could recognize 
a good investment strategy would be Warren Buffett. It’s possible to 
put the point in Darwinian terms: if this is the sort of universe we 
inhabited, why wouldn’t we already have evolved to take advantage of 
it?

Scott Aaronson







 Base case
 Tells recursion when to stop
 Can have multiple base cases
 Have to have at least one or the recursion will never end

 Recursive case
 Tells recursion how to proceed one more step
 Necessary to make recursion able to progress
 Multiple recursive cases are possible



 Factorial:

public static int factorial(int n) {
if( n == 1 ) {

return 1;
} else {

return n * factorial(n – 1);
}

}





 A tree is a data structure built out of nodes with children
 A general tree node can have any non-negative number of 

children
 Every child has exactly one parent node
 There are no loops in a tree
 A tree expressions a hierarchy or a similar relationship



 The root is the top of the tree, the node which has no parents
 A leaf of a tree is a node that has no children
 An inner node is a node that does have children
 An edge or a link connects a node to its children
 The depth of a node is the length of the path from a node to 

its root
 The height of the tree is the greatest depth of any node
 A subtree is a node in a tree and all of its children
 Level: the set of all nodes at a given depth from the root
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 A binary tree is a tree such that each node has two or fewer 
children

 The two children of a node are generally called the left child
and the right child, respectively
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 Full binary tree: every node other than the leaves has two 
children

 Perfect binary tree: a full binary tree where all leaves are at 
the same depth

 Complete binary tree: every level, except possibly the last, is 
completely filled, with all nodes to the left

 Balanced binary tree: the depths of all the leaves differ by at 
most 1







 Review



 4-5 p.m. office hours canceled today because of Faculty 
Assembly

 Finish Project 3
 Due Friday by midnight

 Review chapters 3 and 4 for Exam 2
 Next Monday!
 We'll review more for Exam 2 on Friday
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